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A MULTTPOINT METHOD OF THIRD ORDER

W. E. Bosarge, Jr. and P. L, Falb

Abstract

Iet F be a mapplng of the Banach space X into itself. A

" convergence theorem for the iterative solution of F(x) is
proved for the multipoint algorithm X 1= % - ¢(x ) where
¢(x) [F(x) + F(x- Fl lF(x))] and F! 1is the Frechet derivative

of F. The theorem guarantees that, under appropriate conditions
on F, the multipoint sequence {xn} generated by ¢ converges
cubically to a zero of F. The algoritim is applied to the non-

linear Chandrasekhar integral equation

(t)f ’;jfés) S x() 4 1=0

where wb > 0., A discretization of the equations of iteration is

discussed and some numerical results are given.

1. Introduction

Let F be a mapping of the Banach space X into itself,
Considerable effort has been devoted to the study bf iterative
methods for the determination of zeros of F i,e, solutions of
F(x) = O (see, for exemple, [1], [2], [3], [6], [7] and [8]).
Here, we cénsider a, multipoint method of third order for the solu-

tion of F(x) = 0 which is based on the algorithm



™
!

= x, - Bxy) (1)

n+1

where

i) = BNRG) + PR RG] (@)
and F% ig the Frechet derivative of P, This algorithm redquires
several evaluations of F and a single inversion of the linear
operator F% at each iteration step. We show that, under appro-
priate conditions on F, the algorithm generates a sequence which
converges cubically to a zero of F. Since most higher order methods
require the computation of correspondingly high order Frechet
derivatives, we feel that the algorithm (1) and its generalizations
([7]) have definite practical utility.

We apply thé algorithm and convergence theorem to the

Chandrasekhar integral equation

(3)

% ltx(s)
—Q—X(t)f —S_+_E—-ds - X(‘t) + 1 =20
(o]

where « > 0. The integral equation (3) is equivalehnt to the

operator equation in ¥([0,1])

F(x) = B(x,x) - IXV+ 1=0 - ®



where

BGx,x) (1) = 5%(0)] ik Tx(s)ag O G)

s+t

and ® >0,
o)

2, A Convergence Theorem

We now state and prove a convergence theorem for the algorithm
(1). The result is similar to Kantorovich's theorem on the con-

vergence of Newton's method ([3]).

THEOREM. Suppose that F is twice continuously differentisble on

the closed sphere E(xo,r) = § and that there are constants B_,d,

and K such that

. -1 . -1 .
(1) F&o exists and ”F;O | = B;

(i1) HF' 8l HF(X ) =

(1i1) sup (2]} =
xeS

KB d
(1) PGl 5 a1+ —3-9);

81
= <
(v) 17”0 st and BXn s 5/9
KB d,
where 1 = db<l + —5—). Then the multipoint sequence {xn} for

F based on x (i.e. the sequence X =X , - ¢(xn_l)) converges




cubically to a root x* of F(x) =0 in § and the rate of con-

vergence is given by

DT
el = G @)’

R n=1,2,,.. (6)

o’

where ho = BOKno.

Proof. The proof is by induction on n. We shall define sequences

B dn’ M, and hn by setting

B, =B, /(b ;) (7

& = hfl-lnn-—l/ 2(1-h, 1) )
KB, d

Tln = dn(l + 5 n) (9)

h = KB, (10)

and we shall show that the basic hypotheses (i) - (v) are satisfied

for X, relative to the constants Bn’dn and K. We then estimate

lx.. -x|| and show that {x_} is a Cauchy sequence in 8. Since
pHm o n n

S 1is complete, {xn] converges to an element x* of 8 which we
prove is a zero of F.
We begin with the transition from n=0 to n=1, Since F

is twice differentiable on E%

73 ll = Kllx-vll (11)



for all x,y in S and so, in particular, we have

IIF;COII - lIF;{llI = IIF;QO—F;{]_H s Kljx, -x |l

[note that ”xl-XO“ = H¢(xo)” s n = r]. It follows that

Kn
ol E L - e 'z (1-n)|E 0
"Fxl” [ W]”FXO” ( O)HFXO” >

and hence that F%;l exists. Moreover, ”F%;l” - ”F%;ln < Boho/(l—ho)
so that
-1
”F;cl | = B/(-0)) = B,. (12)
Letting y_ = x_ —’F;—lF(XO) and noting that ”yo-xou =

o

1A

d =n, =71, we expand F(xl) in a Taylor series

B2~ te ()

gbout Yo to obtain the inequality
- Xy, -1y2 2
IF(x) - 2ev) + B2 m Rl s Sl PR G
o o o] -

which, in view of (11), yields the inequality

el
Il = w2 e )] + a2y



since |[F(y,) - F(x,) - F! (—F}'(_lF(xo))” s iz(z-llf‘}'("lllgu}?(xo)H2 implies
’ [0} [¢) o]

2
(o)Ke]
(

Kd?B
4 +——2)
o L

that "F(yo)” s we deduce that ”F(xl)” <

'édo’ 2

and hence that

2

e G )] 5 g0 - %)
X, 1 —m'-_h;)—"dl' ‘

We now observe that n = (;g;') (g) (g(l);‘) so that

ny* N, S{(5) (701) O-%Osl«. We claim that x, = x, -

et [F(xl) + F(Xl-F;c;lF(xl))_] is a well-defined elemept of § and
that ||x,- l” s 1. Letting y, = x; - F}'C]—-JF(xl) and noting that
ﬂyl—xlu = fIF;C;J"E‘(Xl]] s d, so that yl € §, we can see that x, is
defined and that [lxy-x || = [p(x)]. wow, u¢(x ) = w;(ijl)n 4
MF;;lF(yi)H and |F(y,) - F(x,) - F;l<-F;;1F<xl>>n = gnF;;lngnF<xl>u2,

together imply that

I8¢l = 8,1+ 13

) =y (1)
. 1 1 .
Since ?.7”1 i,?no and since hl = KByn, 8o that
o
KB
ol 01 0,2
YTO_E_T(?)OO-(’T >lh$()ho§ho§g’



we deduce that the basic hypotheses (i) - (v) are satisfied for X
relative to the constants Bl’K and dl.
We can show, by exactly the same arguments, that if the basic

hypotheses (i) - (v) are satisfied for x ~relative to B ,K and

d. then the same holds true for x relative to B K and |
n’ n+l n+1?
dh+l' Moreover, we have
701
Npep = (OPH2 (16)
and
16,2 5
<
n+l T ( (a7

for n=0,1,2,... . It follows that

»152,
n, s Qo) Cln ) (18)
and
n s (g)zn s )3 no o (19)
for n=1,2,... . Since the x are in § and since the series
TThis follows from (16) and (18) as
< (gg%) (_6)2n 16, )(£§13 ) ) 0, s (gi; "6)n(16h )3 .
< )2n(éf Y 50 lno-



)y n, is convergent and since

Iy m%all =

mHm n

m-1 m-1 ' n+k
8\2(ntk) 16, 3 -1
% Ty 2 (§ ) o

(T8,

1A

n-1 m-1
GG’ . T O (20)

A

1,,8y2n,16 371
E D)

we deduce that {xn} is a Cauchy sequence in § and, therefore,

has a limit x* in S with

. n-1
I )l = GGy (21)

n T e}

for n=0, 1,2,... .

It remains to show that x* 1is a zero of F. Now, the in-

duction argument yields (compare (13)) the inequality

2 2 2
h .1 h .7 h .1
< n-1 'n-1 < n-1'n-1 < n-1'n-1 o0
FC = s =5 5 — 25 (22)
n-1/"n n-1 o) _

for n=1,2,... since B 2 B . S8ince F 1is continuous, we
252 ’ n-1 o e/
deduce that x* is a zero of F from (18) and (19).. Thus, the
theorem is establisghed.
We note that the numerical estimates in condition (v) and in
equation (6) are not quite optimum but rather are chosen for con-

venience of calculation.



We consider the nonlinear Chandrasekhar integral equation (3).
We let X be the Banach space of continuous functions on [0,1],
#([0,1]), under the uniform (or supremum) norm and we let B(-,-)

be the bilinear map of X ® X into X given by

: % 1y
B(u,v)(t) = é—u(t)f EIEv(s)ds (23)

for t e [0,1]. Then determining a solution of (3) is equivalent to

determining the roots of the "quadratic" operator equation
F(x) = B(x,x) - Ix+ 1L =0 (2k)
in  Z([0,1]).

Now we observe that the operator F 1is twice continuously

Frechet differentiable and that
'F;z = B(x,z) + B(z,x) - Iz (25)
F;(w,z) = B(w,z) + B(z,w) (26)

for any x in  ¥([0,1]). We then have:

COROLIARY. Suppose that 0 < (Do £ .65 and that r = %(l+mo,@n2).

The the multipoint sequence {xn} generated by the algorithm (1)




10

* L =
With X = 0(+) converges to a solution x of (3) in 8(0,r) and
OR £n2
the rate of convergence is glven by (6) with o = (1+——) and
»_4n2

o
h0 = ozn2(l+ ).

Proof; We simply show that the hypotheses of the theorem are satis-

fied. Since x = 0(-), we have F} = -I and F(x))=1() by
o]
virtue of (25) and the definition of F. Thus, ”F;—l” =1 and
o
”F' H ”F(x )| = 1 so that we may take B,=4d_ =1 and the hy-

potheses (i) and (ii) will be satisfied. As for (iii), we note

that

A

|7 (r,2) (8)] 5 52w <t)|f b 2(s)]as + |z(t)lf L Jw(s) as)

A

l
0 ([ gEgta)- ()]
=t= (¢]

(o fn2)[[w () [Iz()]

A

which implies that ”F;“ £ K for all x with K= o /2. Now
P(x)) = ~I[1(+) + P(-1(:))] = -1(-) - B(-1(-)) + 1(- ) + l( ) =

1(+) - B(-1(+), -1(-)) and B(-1(+), -1(-))() = z—f
@, in2
that B 8 1+ 2 =

The hypothesis (v) is satisfied by virtue of the assumptions of the

so
s+t

o and the hypothesis (iv) is satisfied.

corollary. Thus the corollary follows from the theorem.

We now describe the algorithm (1) for the mapping F of (24).
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Setting Y, =%, - F}'{an (xn), we have

(k%) = -F(x ) - F(y) (@)
n
and
7y (7,x,) = Flx) (28)

for n=1,2,... . Thus, the algorithm (1) is equivalent to the

system

B(x,,¥,) + B(y,x ) - v, = B(x,x ) - 1(-)

(29)
B(Xn’xn+l) * B(Xn+l’xn) T B(Xn’xn) - 1) - F(yn)
which can be written more explicitly in the form
l
x (¢ )f Loy (s)as + v ) % —2x (s)ds] - y_(t) =
(30a)

% = t
é——xn(t)i -s—ﬁxn(s)ds -1

1 l

5 (6] g (03 + 3 (00 i, (6108 - 3 (6) =

s+t n

o, . ‘ 1 (300)
(ﬂfﬁg(ﬂﬁ-y()fﬁg(Q%]+Y@)-2



S

The system (30) is a pair of "similar" linear Fredholm equations for
I, and X 10 respectively. We shall see, in the next section,
that only one of the pair of equations need be solved at each step

in the "practical" application of the method.

4, Discretization and Numerical Results

The corollary gquarantees the convergence of the algorithm (1)
for the Chandrasekhar integral equation_wifh O<w = .65. How-
ever; it is clear from the form of (30) that the pair of linear
equations required at each iteration step is not easily solved.
Thus, we shall "discretize" the system in an appropriate way and
then carry out the calculations on a computer. The chief advantage
of the multipoint method will then become apparent since only one
"matrix inversion" will be required at each iteration step.

Now let T'(t,s) = t/(s+t) and let to,...,tm be a partition
(or mesh) on [0,1] with t; =0 and t = 1. Suppose that
(Yi’°"’7ﬁ’sl""’sm) represents a suitable quadrature rule with
the 71's as weights and the S5 as mesh points in [O,1]. Then,

we have

1
J D(t,,s)x(s)ds = g‘r.l‘(t.,s;)x(s.) (31)
o i PiE e I

for i-= O,l,...,m and so,
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1 YlI‘(tl,sl) ‘rmI‘(tl,sm) x(sl)
[ r(t,8)x(s)ds R : . (32)
o ° .
YlP(tm’ Sl) Tt Ymr(tm’ Sm) \X(sm)
1
provides an m-dimensional representation of [ I'(t,s)x(s)ds. In a
o

similar way, we can represent (approximate) the bilinear operator B
by the m-dimensional bilinear operator B® defined by the "three

. . . 1} .
dimensional matrix", B~ with

= (b

W
o]
(sik being the Kronecker delta). In other words, if o and B are
m vectors with components Qqyeeesy and Bl, sas ’ﬁm’ respectively,

m m
m . .
then B (a,p) 1is the m vector with components j§1 k_z}lbijkakﬁj'

Thus, if we set x = (x(tl),...,x(tm)")', then we can represent (24)

in the discrete form
F(x) =B(x,%) -Tx+1 =0 (3%)

where _1;m is the m X m identity matrix and im is an m vector
with all components equal to 1. Applying the algorithm (1) directly
to (34), we obtain a system of equé,tions identical to the discretized

version of (30). In other words, we have



1k

B (5, ¥,) + B X)) - ¥, = Bi(x,x) - 17 (352)
Bixpxyg) + Bl X ) - x5 = Br(x,x) - 1" - E(z.) (35b)

or, equivalently,

= c : (36a)

—Mny—n -1

MZns1 =% " & (36b)

where Mn is the m X m-matrix given by

M, = [B'(x,) + B'(s,x) - I 37)
and C én are the m vectors given by
ey = Bixpx) - 1% A = B(y,y) - ¥y, + I (38)

Thus, if Mn is invertible, we have

-1
c

In =My ¢y (39a)

™
1

CNER N R | (59°)

and so only a single inversion is required at each iteration step.
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Although the approximate solution is in "discrete form", we can fit
an interpolating polynomial to the points xn(tk) after the desired
degree of accuracy has been obtained. It can also be shown (cf. [4])
that the operations of "discretization" and "iteration" are
commutative and an error analysis, based on this fact, can be
carried out.

Results of some particular computations appear in the following
tables. The interval [O,1] was partitioned into 10 subintervals
of length h = 0.1 and Simpsonts rule was used for the numerical '
integration. 1In Table I, we present the number of iterations re-
quired to obtain “convergence;f'.r for various values of @, and, in
Table ITI, we present the actual approximate solutions. The results
in Table II compare quite favorably with those presented by Rall in
[51. We also observe that, although the corollary guaranteed con-

vergence only for 0 < oy s .65, the actual computations converged

for values of o > 65, .

TABLE I

W, 0.1} 0.2 0.3| 0.4] 0.5} 0.6} 0.7} 0.8] 0.9] 1.0
Iterations
Required 2 2 2 3 5 > b b b 5

?Convergence is here construed to mean that

”§h+1'_n” £ 1.0 x 1070

where ||| is the Euclidean norm in Ry ;-
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TABLE II
‘\\fb 0.1 0.2 - - 0.3 0.k 0.5
ot B
0.0 | 1.0000000 1.0000000 1.0000000 1.0000000 | 1.0000000
0.1 |1.012Lkk06 1.0257406 1.040054%3 1.0555925 [ .1.0726499
0.2 |1.0186557 1.0389366 1.0611696 1.0858020 1.1134719
0.3 |1.023008% | 1.0482969 | 1.0763597 | 1.1078805 | 1.1438493
0.4 ]1.026306L 1.0554552 1.0880966 1.1251392 1.1679153
0.5 |1.0289211 1.0611705 1.0975427 1.1391573 1.1876716
0.6 |1.0310583 1.0658683 1.1053562 1.1508398 1.2042799
0.7 |1.0328445 1.0698127 1.11195183 | 1.1607608 1.2184896
0.8 |1l.0343627 1.0751792 1.117607L 1.1693124 1.2308130
0.9 |1.0356721 1.0760908 ‘| 1.1225166 1.1767711 1.2416200
1.0 | 1.0368137 1.0786371 1.1268243 1.1833400 1.24118h4k
\\\fé 0.6 0.7 0.8 0.9 1.0

t

0.0 | 1.0000000 1.0000000 1.0000000 1.0000000 | 1.0000000
0.1 |1.0016738 | 1.1133937 | 1.159196k | 1.17253k9 | 1.24k1701
0.2 | 1.1451549 1.1824722 1.2285375 1.2912197 1. kh16694
0.3 |1.1857929 | 1.236290 | 1.3003721 | 1.3909588 | 1.6277685
0.4 |1.2285030 1.280475 1.3608188 1.47799668| 1.8075085
0.5 |1.2456979 | 1.3177642 | 1.4129552 | 1.5554475 | 1.9830198
0.6 | 1.2688045 1.398840 1.4586525 | 1.62521L5 2.1554050
0.7 | 1.2887496 | 1.3779287 | 1.hoo1760 | 1.6886072 | 2.3253097
0.8 | 1.3061819 1. 4026842 1.5354k41h 1. 7465906 2.4931469
0.9 | 1.3215723 1.Lk2k 322 1.5681352 1.7999086 2.6591950
1.0 | 1.3352737 | L1.Lk45133 1.5977897 1.8491525 2.823638
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